CH₃OHÞ		CH3OD.		CD ₂ OH ^d CD ₂ OD ^o	Assignment	
3390±50	br, w	2490±50	br, m	3350±100 br, w 2500±60	OH stretching a'	
2989 2943 p? 2910	m s m	2990 2945 2909	m-s vs m	$\begin{array}{cccc} 2245 \pm 5 & p \\ 2230 \pm 5 & dp \\ 2213 \pm 8 & p & vw \end{array} \begin{array}{c} 2247 \\ 2216 \end{array}$	CH ₃ asym. stretching a' and a'' t	
2835 p	vs	2835	VS	2141 ± 1 p m 2147 m 2074 ± 1 p vs 2076 s 2020 ± 3 dp? vw	$2 \times (asym. CH_3 bending a'')$ CH ₃ sym. stretching a' $2 \times (asym. CH_3 bending a')$	
1448 dp	m	{	14.1	1127±2 p m 1130 vw	CH_3 sym. bending a' (CH_3 asym. bending a''	
1468 dp	m	1464	br, s)	1072±2 dp m 1069 vw	(CH ₃ asym. bending a'	
1363 p?	br, w	948		1360±10 br, w	OH bending a'	
1160	vw	1226	w	894±5 dp m 824 vw	CH ₃ rocking a"	
1109 dp?	w	1165	w		CH_3 rocking a'	
1033 p	S	1031	S	986±1 p vs 989 s	CO stretching a'	

TABLE V. Raman frequencies of liquid CH3OH, CH3OD, CD3OH, and CD3OD.*

^a p=polarized, dp=depolarized, other abbreviations are as in Table I.

b Average values from the works cited in footnotes 13, 14, 15, 16, 17, 19, 20, 22, 23, 24, 25. Polarization data are from the works cited in footnotes 13, 14, 25.
Average values from the works cited in footnotes 15, 17, 18, 19. There are no polarization data.

d This work.

^e Average values from the work cited in footnotes 3 and 22. There are no polarization data.

^f Fermi resonance occurs between the a' asymmetric stretching mode and an overtone or combination of the CH₂ symmetric bending mode giving the extreme frequencies in this group.

In I low weather I

1.55 for CH₃OH-CH₃OD, 1.67 for CD₃OH-CD₃OD, and 1.53 for CD₃OH-CH₃OD. Also, the OH bending frequency in CH₃OH and CD₃OH is 1346 and 1297 cm⁻¹. There is evidently considerable coupling in at least three of the methanols between the OH bending motion and the motions of other atoms. The a' CH₃ rocking motion is a likely candidate for coupling with the OH bending motion and so we may expect that in some of the methanols the a' and a'' rocking frequencies will be quite widely separated.

In CD₃OH there are two bands at 858 and 877 cm⁻¹ which are almost certainly the CD₃ rocking bands. The bands are close together, and it seems likely that there is relatively little interaction with the OH bending motion,

FIG. 6. Vapor-phase fundamental frequencies of the four isotopic methanols in the 700-to-1500-cm⁻¹ region. Strong coupling occurs between OH bending and a' CH₃ rocking in CH₃OH; between OD bending and a' CD₃ rocking in CD₃OD; and between CO stretching and CD₃ symmetrical bending in CD₃OH and CD₃OD. There is also some coupling between OD bending and a' CH₃ rocking in CH₃OD.

Insuinginta	обо. СО СНзОН	CH3OD	CD₃OH	CD3OD
a" CH3 asym. stretching CH3 sym. stretching CH3 sym. bending CH3 asym. bending CH3 asym. bending CH3 rocking a" CH3 asym. stretching CH3 asym. bending CH3 asym. bending CH3 asym. bending CH3 rocking	3687 2973 2845 1455 1455 1477 1346 1034 1116 2973 1415 1233	2720 2965 2840 1458 1500 867 1041 1160 2965 1427 1228	3690 2235 2077 1134 1047 1297 988 877 2235 1075 858	2724 2228 2080 1135 1060 776 983 1024 2228 1080 856
Molecular weight $10^{40} I_x$ $10^{80} I_y I_z$ $10^{40} I_{internal rotation}$ a' ratio observed a'' ratio calculated a'' ratio calculated	32.04 35.32 224.1 1.009	$\begin{array}{r} 33.05\\ 38.20\\ 274.8\\ 1.621\\ 0.504\\ 0.536\\ 1.002\\ 1.009\end{array}$	$\begin{array}{r} 35.06\\ 43.58\\ 503.8\\ 1.116\\ 0.210\\ 0.216\\ 0.415\\ 0.414\\ \end{array}$	36.07 46.80 577.5 1.912 0.114 0.115 0.397 0.416

TABLE VI. Fundamental frequencies of isotopic methanols in vapor-phase and product-rule ratios.

whose frequency, 1297 cm⁻¹, is relatively far away. In CH3OH there are two broad bands with very complicated structure with centres near 1116 and 1233 cm⁻¹ and it seems likely that these are the methyl rocking bands. These bands were observed, but not assigned, by Plyler⁵ who suggested tentatively that the complicated structure in these regions may be due to combinations of the internal rotation with the CO stretching and CH₃ rocking modes. This does not appear to be entirely correct because the two vapor bands are clearly also present in the solid and are relatively little shifted. It would be surprising if combination bands of the kind suggested did not shift very considerably on condensation due to shifts in the internal rotation. In CH3OD the CH3 rocking bands are almost certainly at 1160 and 1228 cm⁻¹. It seems likely that the 1233-cm⁻¹ band of CH₃OH and the 1228-cm⁻¹ band of CH₃OD are due to the relatively uncoupled a" CH₃ rocking modes, and that in CH₃OH the a' CH₃ rocking and the a' OH bending vibrations are coupled to give the 1116-cm⁻¹ and 1346-cm⁻¹ bands. The uncoupled a' OH bending frequency is presumably near the value of 1297 cm⁻¹ that it has in CD₃OH, and in CH₃OH coupling with the a'CH3 rocking vibration causes it to move upwards to 1346 cm⁻¹. In CH₃OD the a' CH₃ rocking and the a' OD bending modes are slightly coupled to give the 1160-cm⁻¹ and 867-cm⁻¹ bands. The relation between these frequencies is shown diagrammatically in Fig. 6.

A similar interaction occurs in CD₃OD, in which both the CD₃ rocking frequencies would be expected to be near 860 cm⁻¹ by analogy with the CD₃OH bands at 877 cm⁻¹ and 858 cm⁻¹, and the OD in-plane bending frequency would be expected to be near 867 cm⁻¹, the frequency in CH₃OD. In fact, a strong band occurs at 776 cm⁻¹ and this must be due to coupled a' OD bending and a' CD₃ rocking modes. The a'' CD₃ rocking mode is at 856 cm⁻¹, relatively unshifted from CD₃OH. The other band due to the coupled a' OD bending and a'CD₃ rocking vibrations is presumably increased in frequency to near 1024 cm⁻¹, a value which fits well with the product rule (see below). This whole region, both in the vapor and in condensed phases, contains considerable structure due to the CD₃ bending modes, and the exact position of the CD₃ rocking band is uncertain. However, the increased absorption of CD₃OD as compared to CD₃OH in the region 1000 to 1100 cm⁻¹ confirms the presence of an additional band there. The two coupled vibrations at 776 and 1024 cm⁻¹ are not displaced equally from their unperturbed frequency expected near 860 cm⁻¹. Coupling with other vibrations therefore occurs.

The above approximate description of the coupling of group vibrations in methanol accounts partly for the irregular isotope shifts, and disposes of the main objection of previous authors^{2,8,11,12} to the assignment of the 1346-cm⁻¹ band in CH₃OH vapor to the a' OH bending mode.

In Table VI our assignments of the fundamental frequencies for the four methanol molecules are listed and the observed and calculated product-rule ratios are compared. The moments of inertia used in the calculation were derived from the microwave values of Venkateswarlu and Gordy.³¹ The average deviation between the theoretical and experimental ratios is 2.5%, a reasonable value in view of the uncertainties of 1% in several of the frequencies. It is likely therefore that our assignments of the CH₃ bending and rocking modes are essentially correct.

Several combination bands were observed, and tentative assignments are advanced in Tables I-IV.

³¹ P. Venkateswarlu and W. Gordy, J. Chem. Phys. 23, 120C (1955).